Effects and Complications of Percutaneous Epiphysiodesis with Transphyseal Screw in the Management of LLD

Song, Mi-Hyun
Cho, Tae-Joon
Yoo Won-Joon
Choi, In Ho

Seoul National University Children’s Hospital
What is PETS?

- Percutaneous Epiphysiodesis with Transphyseal Screw (PETS)

- First described by Metaizeau (1998)
Bright side vs. Dark side

- **Low postop. morbidity**
 - Short incision / Short op time / Less postop. pain / Short hospital stay / Early ambulation & full weight bearing /

- **Reversible & versatile**

 vs.

- **Directly involve the physis**
Angular Deformity Correction by Asymmetrical Physeal Suppression in Growing Children: Stapling Versus Percutaneous Transphyseal Screw

Sung Jin Shin, MD,* Tae-Joon Cho, MD,† Moon Seok Park, MD,‡ Jung Yun Bae, MD,† Won Joon Yoo, MD,† Chin Youb Chung, MD,‡ and In Ho Choi, MD†

JPO, 2010
Purpose

To analyze effects and complications of PETS in the management of LLD
Materials

- Inclusion criteria:
 1. Management of LLD
 2. Followed until skeletal maturity or screw removal
 3. Not combined with other bony procedures
- 59 patients
 - 36 boys (13.7±1.10 yrs), 23 girls (11.8±0.64 yrs)
 - 69 physes (50 distal femur, 19 proximal tibia)
Etiology

<table>
<thead>
<tr>
<th>Condition</th>
<th>Overgrowth</th>
<th>Undergrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital hemihypertrophy</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Post-traumatic</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>LCPD</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Post-infectious</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DDH</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HME</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Congenital hemimelia</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>SCFE</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Paralytic</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Congenital pseudoarthrosis of the tibia</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Congenital hemihypotrophy</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>McCune-Albright syndrome</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Methods

- Measurements from the medical record and teleradiograph
 - Segment length & LLD at operation
 - Chronologic age at operation
 - Final segment length & LLD *with* PETS
Methods

- Measurements from the medical record and teleradiograph
 - Segment length & LLD at operation
 - Chronologic age at operation
 - Final segment length & LLD with PETS

- Retrospective growth calculations using multiplier method
 - Optimal epiphysiodesis timing
 - Predicted segment length & LLD without PETS
 - Predicted segment length with PETS
 - Estimated shortening of segment by PETS
Evaluate effects of the PETS (n = 57, late comers excluded)

- Definition of “Efficacy”

\[
\text{Efficacy in the femoral group (\%)} = \frac{(\text{predicted length without PETS} - \text{final length}) \times 100}{(\text{predicted length without PETS} - \text{length at operation}) \times 0.71}
\]

\[
\text{Efficacy in the tibial group (\%)} = \frac{(\text{predicted length without PETS} - \text{final length}) \times 100}{(\text{predicted length without PETS} - \text{length at operation}) \times 0.57}
\]

- Predicted segment length with PETS vs. Final

- Final LLD with PETS
Methods

- Screw insertion angle in 3-D

\[\tan \gamma = \frac{\sin \alpha}{\sqrt{(\frac{\sin \alpha}{\tan \beta})^2 + \cos^2}} \]

- Average \(\gamma \) angle = \(\frac{\text{medial } \gamma + \text{lateral } \gamma}{2} \)

- Compare efficacy between two groups
 average \(\gamma \) angle \(\geq \) vs. < median value
Methods

- Complications
 - Angular deformity
 - MAD changes to other zone
 - > 5° angular differences on LDFA, MTPA
 - Screw dislodgement from the epiphysis
 - Difficulty or failure of the screw removal
 - Need instrument(s) other than screw driver
 - Final failure to remove
 - Overcorrection: reverse LLD > 10mm
 - Undercorrection: residual LLD > 10mm
 - Persistent pain, infection, neurological injury, or hematoma
Results

Operation timing

Epiphysiodesis timing calculated by multiplier method

Mean

N=48

Latecomers: excluded

N=11

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 year

Epiphysiodesis timing calculated by multiplier method

N=48

N=11
Results

Estimated shortening (cm)

Femur (N=42)

At operation: 2.4cm
Final: 45cm

Predicted /s PETS

Tibia (N=15)

At operation: 1.4cm
Final: 40cm

Predicted /s PETS
Results

Efficacy (%)

![Box plots showing efficacy comparison between Femur (N=42) and Tibia (N=15).](image)
Results

Final length was larger than predicted by multiplier method in most cases.

- Femur (N=42): Predicted PETS = 46.0, Final = 46.7, \(P<0.001 \)
- Tibia (N=15): Predicted PETS = 37.3, Final = 37.7, \(P=0.0139 \)
Results

LLD (mm) (N=48)

At operation

Final

Predicted /s PETS

Predicted /c PETS

19

21

5.5
Results

Efficacy via screw insertion angle (independent t-test)

Femur
(N=42)

Tibia
(N=15)

Screw insertion angle

>= median
< median

P=0.003
P=0.298
Results

- Complications (25)

- Development of angular deformity
- Screw dislodgement
- Difficulty or failure of removal
- Overcorrection
- Undercorrection
- Pain, infection, neurologic, hematoma
Results

Screw dislodgement + development of angular deformity
Results

Difficulty or failure of the screw removal
Discussion

- Effect of PETS is delayed.
 - 89% inhibition in DF, 95% in PT (Metaizeau, 1998)
 - 66% inhibition in DF and PT (Illharreborde, 2012)
 - 76% inhibition in DF, 80% in PT (current study)

PETS will under-correct LLD if performed as predicted by multiplier method.
Technical Points

- Retrograde guide pin insertion
- Screws cross at different coronal planes
- Screws penetrated one-fourth of the physeal width at coronal plane
- Screws centered at sagittal plane
- Screws as vertical as possible
- Screws as symmetrical as possible
- As many threads in the epiphysis as possible
- Sufficient thread height preferred
- Screw head large enough
- Screw heads away from the cortex
- Reverse cutting thread preferred
Technical Points

- Retrograde guide pin insertion
- Screws cross at different coronal planes
- **Screws penetrated one-fourth of the physeal width at coronal plane**
- Screws centered at sagittal plane
- Screws as vertical as possible
- Screws as symmetrical as possible
- As many threads in the epiphysis as possible
- Sufficient thread height preferred
- Screw head large enough
- Screw heads away from the cortex
- Reverse cutting thread preferred
Technical Points

- Retrograde guide pin insertion
- Screws cross at different coronal planes
- Screws penetrated one-fourth of the physeal width at coronal plane
- Screws centered at sagittal plane
- Screws as vertical as possible
- Screws as symmetrical as possible
- As many threads in the epiphysis as possible
- **Sufficient thread height preferred**
- Screw head large enough
- Screw heads away from the cortex
- Reverse cutting thread preferred

6.5 mm titanium screw
7.0 mm stainless steel screws
Technical Points

- Retrograde guide pin insertion
- Screws cross at different coronal planes
- Screws penetrated one-fourth of the physeal width at coronal plane
- Screws centered at sagittal plane
- Screws as vertical as possible
- Screws as symmetrical as possible
- As many threads in the epiphysis as possible
- Sufficient thread height preferred
- **Screw head large enough**
- Screw heads away from the cortex
- Reverse cutting thread preferred

7.0 mm stainless steel screw
Summary

- PETS is a minimally invasive and effective method in the management of LLD.

- Considering its delayed effect, we recommend to perform PETS at least 1 year earlier than calculated by multiplier method.

- Efficacy may be affected by the screw insertion angle.

- Detailed technical points should be kept in mind to minimize complications.
경청해주셔서 감사합니다.